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METHOD FOR DETERMINATION OF THE ACCURACY OF CLOSED DISTANT 

STATIONARY ORBITS DETERMINED FROM RANGE RATE" 

By Alton P. Mayo 
Langley Research Center 

SUMMARY 

* 
Orbit-determination-accuracy procedures were derived for  inertially fixed orbits 

about distant bodies. 
approximated over short  time periods for orbits about the moon and the planets. 
sis of the results computed by using the stationary-orbit techniques would be indicative 
of the orbit-determination resul ts  computed by using short  data a r c s  on slowly varying 

This condition is realized only for binary stars but it is closely 
Analy- 

orbits. 

Analytic expressions for uncertainty in the orbit parameters w e r e  derived by 
assuming that a measurement was made every degree of t rue anomaly. 
sions could be used for other measurement schedules by application of a correction given 
by the inverse square root of the number of observations. The equations, as presented, 
are fairly brief and are applicable to short-arc orbit-determination accuracy, linearity, 
and convergence studies. 

These expres- 

INTRODUCTION 

Since a basic requirement for any space mission is that the orbit of the spacecraft 

The basic data used in  the procedures for computing the orbit are mea- 
be known, considerable attention has been given in  the past decade to procedures for orbit 
determination. 
surements made by an Earth based tracking system or  measurements made by an onboard 
navigator. The computed estimates of the spacecraft position and velocity are always 
erroneous; the degree of e r r o r  depends mainly on the type and accuracy of the measure- 
ments. It is standard practice to consider these factors i n  the orbit-determination pro- 
cess and to provide statistical data on the sizes of the e r r o r s  that could possibly exist in  
the computed spacecraft position and velocity. 

* Part of the information presented herein was included in  a thesis entitled "ACCU- 
racy of a Heliocentric Space Metric as Determined From Earth-Based Tracking'' offered 
in  partial fulfillment of the requirements for the degree of Doctor of Philosophy, Virginia 
Polytechnic Institute, Blacksburg, Virginia, December 1968. 



The accuracy of the prediction of future positions and velocities of the spacecraft 
and the accuracy to which the spacecraft can be controlled both depend on the orbit- 
determination accuracy. The planet's mass ,  the solar pressure,  and relativistic effects, 
among other things, can be determined from measurements of the orbit. The accuracy 
of determination of these parameters  is also basically related to the orbit-determination 
accuracy. Many studies have been made of the procedures for computing orbit- 
determination accuracy. Complete and lengthy numerical procedures have been developed 
for both interplanetary and orbital flight. Shorter analytic approximations have been 
developed for the interplanetary and planetary approach phases of the missions. (See 
refs. 1 and 2.) 

Analytic solutions have the advantage of bringing out the parameters  which affect 
the orbit-determination accuracy and contribute to an understanding of the problem which 
is more obscured in the lengthy numerical procedures. Analytic solutions a r e  also s im- 
pler and more rapid to compute. In this paper, analytic approximations for the accuracy 
of orbit determination are developed for the case where the spacecraft is in a stationary 
closed orbit about a very distant planet and an Earth based t racker  makes range ra te  mea- 
surements to the spacecraft. 
orbit-determination technique which was developed decades ago in  order  to determine the 
orbits of binary stars from spectroscopic data. 

The results a r e  derived from the classical binary-star 

The accuracy of orbit determination is directly influenced by the e r r o r s  of the 
tracking system. In this paper random uncorrelated e r r o r s  are considered to exist in 
the range rate measurements. The orbit-determination accuracies a r e  obtained for two 
cases  where (1) the range ra te  measurements a r e  made at prespecified values of true 
anomaly and (2) the range ra te  measurements a r e  made at prespecified values of time. 

An example application of the procedures derived in  the paper is given for an orbit 
about the planet Mars .  The content of this paper is essentially an  expansion of part of 
reference 3.  

SYMBOLS 

a semimajor axis of orbit 

- a orbit parameter,  na s in  i 

orbit parameters,  where j = 1,2,. . .,6 (see eqs. (12) to (16) and eq. (47)) 

.. 
A5 parameter in  equation (42) 

2 



matrix of partial derivatives (see eq. (43)) 

orbit parameter (see eq. (51)) 
- 
J35 

.. 
B5 parameter in  equation (39) 

diagonal matrix of Bj parameters  LB1 
” 

cofactors of inner matrix of equation (61) 
c339c44 

[cov E] covariance matrix of orbit parameters  

e orbit eccentricity 

E orbit parameter (see eqs. (30) and (43)) 

h orbit-angular-momentum vector 

i orbit inclination 

11,129. -918 integrals as defined in  equations (52) to (59) 

diagonal elements of the information matrix 5 j 
pnfo] information matrix of orbit parameters 

k l  orbit parameter (see eq. (4)) 

K number of orbits 

n mean anomaly ra te  

- 
Q parameter in  equation (36) 

* 
r radius 

t time 

3 



t ime of pericenter passage 

planet-centered rectangular coordinates 

gravitational constant 

true anomaly 

range 

range ra te  

standard deviation 

standard deviation of range ra te  e r r o r s  

orbit parameter (see eq. (67)) 

argument of periapsis 

longitude of ascending node 

Subscripts : 

a semimajor axis 

a orbit parameter,  na sin i 

e eccentricity 

j ,k indices 

N 

time of pericenter passage tP 

0 argument of periapsis 

Matrix notation: 

column matrix 0 
4 



rectangular or square matrix [I 
[I inverse of matrix 

[I transpose of matrix c IT 
A dot over a symbol denotes the derivative with respect to  time. 

L 

PERTURBATION I N  RANGE RATE CAUSED BY THE 

ORBIT-E LE MENT VARIATIONS 

The orbit-determination-accuracy derivations of this paper are based on small- 
perturbation theory. In this section of the paper, approximate linear equations are 
derived which relate the small  perturbations in range rate to small  changes in the orbit 
parameters. In subsequent sections these small-perturbation equations are used in  a 
weighted least-squares technique for calculating orbit-determination accuracy. 

The study of range rate measurements of spacecraft motions in a distant stationary 
orbit has been the subject of many authors. (See refs. 4 and 5.) The range rate equations 
are generally developed by assuming that the effects of parallax may be neglected and by 
using a plane normal to the line of observation for referencing the orbit orientation. The 
choice of this particular reference plane simplifies the equations, since the range rate is 
insensitive to rotations of the ascending node of the orbit about the line of observation. 
The orbit elements are illustrated in  the following sketch: 

Orbit 
I z-axis 

* Tracking station 

5 



From observation of the sketch it can be deduced that the radar  range to the space- 
craft, with parallax neglected, is given by 

p = r s in  i sin(v + w )  + ztracking station 

Taking the time derivative of equation (l), with i and w assumed to be constants, gives 

(2 ) 
. .  6 = i. s in  i sin(v + w) + r sin i cos(v + w)v + ztracking station v 

However, from the relations for a Keplerian orbit, 5 is expressed , 

. nae sin v . na(1 + e cos v) r =  r v  = fix 
then it may by substitution be developed that 

By using the relation 

and letting 

it follows that 

Expanding b in  a Taylor's s e r i e s  and neglecting t e rms  of higher order  yield an expres- 
sion for the perturbation in range ra te  due to small  perturbations in  the orbit elements, 
which is * 

A p = - - a + - A i + - - e + - A w + - A v  . ab ab ab ab ab 
aa a1 ae a w  a v  

6 



Since the component of the range rate due to the tracking-station motion is not a function 
of the orbit elements with parallax neglected the following partial derivatives a r e  
obtained: 

41so letting 

- afi - - -- kye cos w + cos(v + w j  
aa 2a 

-=- kl [cos w + e cos(v + w j  ab 
ae 1 - e2 

- ab = k l  cot i e cos w + cos(v + w i  I: a i  

- ab = kl[-e sin w - sin(v + w j  
aw 

-kle cos w 'kl A1 = B1 =- 
2a 2a 

A3 = k l e  cot i cos w B3 = k l  cot i 

A4 = -kle s in  w B4 = -kl 

A5 = 0 B5 = -k l  

equations (7) to (11) reduce to the form 

7 



* = A4 + B4 sin(v + w) 
am 

2 = A5 + B5 sin(v + w) 
a v  

where the Aj and Bj coefficients are constants for  a given orbit. 

The small-perturbation equation (eq. (6)) is repeated as 

The perturbation in  t rue anomaly Av  may be transformed into a perturbation in 
time by the relation 

A v = ? A t  a t  

Thus 

. ab ab ab ’b At Ap = - A a  + !!!? Ai + - Ae + - Aw + --- aa a i  ae a w  a v  a t  

For the Keplerian elliptical orbit 

and 

- ab=-- -  ” - [A5 + B5 sin(v + w j  2 
a t  a v  a t  

It is established in subsequent sections that, for a constant o r  zero e r r o r  in the 
t ime of the measurement, an interrelation exists between the effects of inclination and 
semimajor-axis length which further reduces the number of parameters affecting the 
range rate to four. 

, 

(23) 

8 



It can be seen from equations (7) and (9) that 

ab ab 
a i  aa 
- = -2a cot i - 

Thus a small  change ha i n  the semimajor axis of the orbit produces the same perturba- 
tion in  the range rate as a change in  the orbit inclination equal to - . This makes 

it impossible to determine, i n  sonie actual situations, whether a perturbation in  range rate 
2a cot i 

is due to a change in the orbit inclination o r  a change in the semimajor axis. P 

Equation (22) now becomes 
t' 

Ab = -(Aa ab - 2a cot i Ai) +2 Ae +- ab Aw +- ab Atp 
aa ae a w  atP 

In equation (25) the perturbation of range rate is expressed in t e rms  of the partial deriva- 
tives with respect to the orbit elements which are most commonly used in orbit- 
determination studies. A a  - 2a cot i Ai ,  
is difficult to visualize. In some cases,  it may be easier to use an alternate parameter, 
na sin i, in the perturbation equations. 

However, the linear combination of parameters,  

The first te rm on the right side of equation (25) can be expressed as the equality 

%(A, - 2a cot i Ai) = a(na sin i)(Aa - 2a cot i Ai) 
a(na sin i) aa aa 

thus 

a(na s in  i) 
aa 

A(na sin i) = (ha - 2a cot i Ai)-- 

and combining equation (26) and equation (28) yields 

2 ( A a  - 2a cot i Ai) = ab A(na s i n i )  aa a(na s in  i) (29) 

4 

Because of the independence of the quantities na s in  i, e, w ,  and tp equation (25), by 
use  of equation (29), may be written i n  an alternate form as 

Ab = ab A(na s in  i) + %! A e  + - ab Aw + - ab Atp 
a(na s in  i) Be EJW atP 

9 



where from equation (3) it follows that 

cos(v + W )  
ab - e cos + - 

\11-e2 a(na s in  i) 

which is of the form 

a’ = A6 + B6 COS(v + W )  
a(na s in  i) 

1 where A6 = 
V1-,2’ 

Equation (30) applies to the case where the perturbation in t rue anomaly is due 
solely to the variation in the time of pericenter passage. In some cases,  A v  may be 
due to any of several  factors. Consider the case where the range rate is sampled at 
prespecified times. The range rate measurements, sampled at prespecified times, cor- 
respond indirectly to measurements made at specified values of v i n  the equation 

For this case, the perturbation At  is given by 

a t  a t  a t  
aa ae atP 

A t  = - A a  + - A e  + - Atp 

From equation (33) 

and 

(34) 

where 

e(e + cos v) 
1 + e cos v 

2.0 - e2 - - 
Q =  

1 - e  2 

10 



The corresponding perturbation equation (eq. (22)) for the range ra te  then takes the 
form 

The first two parenthetical expressions each contain two terms.  The first te rm 
represents  the perturbations in  range rate due to changes in  the orbit parameters,  i f  the 
perturbations in true anomaly are neglected. The second t e rm is the effect of perturba- 

tions in  t rue  anomaly caused by changes in the orbit parameters.  Let - 8b represent the 

first parenthetical expression in  equation (37), that is 

e 
N 

* aa 

* 

Then it follows from equations (17), (23), and (34) that 

N 

where 
,. -p  sin i 

o r ,  in  brief form, equation (39) becomes 

The definitions of the periodic quantities 6 and fi a r e  inferred from equation (39). 

Similarly, let  represent  the second parenthetical expression in equation (37), 
ae 

that is 
N 

ab - ab ab a v  a t  
ae ae a v  a t  ae 
- - -+---  

and from equations (18), (23), and (35) it follows that 
3 

N 

- ab = A2 + B2 cos(v + w )  + A5 sin(v + w)sin v ( l  + e cos v)Q 
ae (42) 

11 
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where is defined in  equation (36) and 

* k l  A5 =- 
2 l - e  

In equations (35) and (42) the 62 t e r m  is included whereas it was inadvertently omitted 
from equations (47b) and (50) i n  reference 3. 

In equation (39) a secular te rm is now observed in the effects of the semimajor axis * 
which did not exist for the case of ze ro  or constant perturbation in  the time. The per- 

derivatives given by equations (19), (20), (23), (39), and (42) are shown in figures 1 to 5 
for an orbit about Mars. 
ments for the Mars orbit are as follows: 

turbative effects of eccentricity are, however, nonsecular for both cases. The partial # 

(These figures are computer-generated plots.) The orbit ele- 

a, k m .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  5000.0 
e . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.1000 
i, radian . . . . . . . . . . . . . . . . . . . . . . . . . .  0.7000 
w ,  r ad ian .  . . . . . . . . . . . . . . . . . . . . . . . . .  0.6000 
tp, s e c  . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.0000 

Figure 1 shows the secular and nonsecular components of - a6 aa’ (See eq. (38).) The 

nonsecular component - ” is a simple cosine curve. This component gives the change 

in  the range rate due to changes in the semimajor axis, with t rue anomaly held constant, 
and physically corresponds to range ra te  perturbations due to changes in a at prespeci- 

fied values of t rue anomaly. The growth of the secular component - - - at is caused 
a v  a t  aa 

by a change in  the period of the orbit due to the change in  the semimajor axis. More 
specifically, it is the result  of measuring range r a t e  on a time basis where there is a 
secular perturbation in  the t rue anomaly of the spacecraft. 

aa 

Two components of the partial derivative of range rate with respect to the orbit 
N 

ab 
ae ae eccentricity 2 are shown in figure 2. The smaller component - expresses the 

range rate perturbations due to changes in eccentricity with t rue anomaly held constant. 
The larger component - ab - - at is due to variations in t rue anomaly at the measurement 

sampling times as caused by a change in eccentricity. It can be deduced from figure 2 
that the major effect of a change in  eccentricity is the result  of changes in the angular 
speed of the spacecraft. 

a v  a t  ae 

The changes are periodic and nonsecular. 

12 



The partial derivative of range ra te  with respect to the orbit inclination shown in 
figure 3 is a cosine curve of period equal to the orbit period and centered about the line 
- ab = AQ. The cosine nature of the curve is evident from equation (19). The partial 
a i  
derivative - ab shown in figure 4 is a sine curve centered about the line 2 = A4 with 

a period equal to the orbit period. The partial derivative of the range rate with respect 
to time of pericenter passage is shown in figure 5. This curve is a plot of equation (23) 
and shows the effect of holding the orbit parameters  fixed and shifting the true anomaly 
of the range ra te  measurement, at every point in orbit, corresponding to a unit increment 
i n  time. The partial derivative is, as expected, periodic but not of simple shape. 

a w  a o  

? 

Q atP 

ACCURACY OF THE ORBIT PARAMETERS WITH RANGE RATE 

MEASUREMENTS MADE EVERY DEGREE 

OF TRUE ANOMALY 

The accuracy of the orbit parameters,  as determined from tracking data, may be 
calculated by the method of weighted least squares. 
perturbation equations or equations of condition a r e  obtained which correspond to each 

(See ref. 6.) In this method, the 

range rate measurement 

(.PI where the matrix 

and can be written in the form 

{Ab} = [A] {AE) (43) 

is a column matrix of measured differences between the range 
rate on the spacecraft's actual orbit and the corresponding values on the nominal orbit. 
The elements of matrix [A] a r e  partial derivatives of the range ra te  with respect to the 
orbit parameters,  and the elements of the column matrix (.E} a r e  increments in  the 

orbit parameters. The information matrix, so called, is given by the equation 

m 

9 where 0- is the standard deviation of the e r r o r s  in  the range rate measurements, which 
P 

a r e  assumed to have a normal distribution and a r e  uncorrelated. The general element of 

' [AIT[A] is given by 

(ATA) jk=z  " ab 
a(Parameter j )  a(Parameter k) n 

(44) 

13 



If the observations a r e  made every unit of t rue  anomaly of the orbit, the approximation 
for a large number of measurements can be written 

ab ab dv 
a(Parameter j) a(Parameter k) 

(ATA)jk 1; 
1 

From equation (45) the information matrix becomes 

Symmetric 

(45) 

(46) 

where 

% = na sin i 

In the following development previously derived analytic expressions (eqs. (18) , 
(19), (20), (23), and (32)) a r e  used for the partial derivatives in  equation (46) and the inte- 
grations a r e  performed to obtain analytic expressions for each element of the information 
matrix. 
ments of the covariance matrix, that is 

The information matrix is then inverted to obtain analytic expressions for ele- 

Only the diagonal elements of the covariance matrix will be obtained. 
the squares of the standard deviations of the e r r o r s  in  the orbit parameters.  In deriving 
the expressions for the accuracy of the orbit parameters,  two cases  will be considered. 
The first case is for  the range rate measurements made corresponding to prespecified 
values of true anomaly. The second case is where the measurements a r e  made at pre- 
specified values of time. 

These elements a r e  

14 



Range Rate Measurements Made at Prespecified Values of True Anomaly 

When range rate measurements a r e  made at prespecified values of t rue  anomaly, 
the perturbation equation is equation (30) expressed as 

AtP 
Ap=-AZ+-Ae+-Aw+--  . ab ab ab ab a v  

aii ae a o  a v  a t  

where a perturbation exists in  true anomaly which corresponds to a constant t ime incre- 
ment Atp. This corresponds to an e r r o r  in the location of pericenter-passage t ime i n  
the true-anomaly t ime history. From equations (32), (18), (20), and (23), respectively, 

where 

- aiJ = A2 + B2 COS(V + W )  

ae 

- ab = A4 + B4 sin(v + W )  

a w  

- aiJ = - ~ 5 ( l  + e cos v) 2 sin(v + w )  

atP 

In the formation of the information matrix the following integrals a r e  needed: 

2 Kn 

I1 = Jo cos(v + W )  dv = 0 

I2 = 1"" sin(v + w )  dv = 0 

2 K7r 

I3 = lo sin2(v + w )  dv = Kn 

(48) 

(49) 

(53) 

(54) 

15 



2K7r 
14 =lo cos2(v + w) dv = Kn (55) 

(56) 2 15 - - sin(v + w )  (1 + e cos u) d v  = 2K3-e s in  w 

(57) 
2 2K77 

sin2(v + w) (1 + e cos v) dv ==(4 + e2 + 2e2sin2w) 
'6 = lo 4 

2 
sin(v + w )  cos(v + o) (1 + e cos v) dv =- Kne sin w cos o (58) 2 

2 
17 

where K denotes the number of revolutions of the argument v. Actually, K corre- 
sponds to the number of orbits over which the measurements are made. 
equations (47) to (50) into equation (46) and using equations (52) to (59), the information 
matrix becomes 

By substituting 

AgE515 + B6E5I7 1 KT (2A6A2 + B6B2)Ka 2AgAqK.rr 

Symmetric L B5218 1 
However, from equations (13), (15), and (32) 

B2 COS w 
A2 = 

e 

A4 = B4e s in  w 

16 



and by substitution, equation (60) becomes 

1  cos^ + 1. ezsin w cos w 2 5 e 2 .  sln cos 
2 

e-2cos2w +-  1 
2 

sin w cos w 

e2sin2w + 1 
2 

5 e2sin2w + - (4 + e2) 
4 8 

Symmetric 
16 

where the matrix [B] is a diagonal matrix of values B1, B2, B4, and & or Be, 
B2, B4, and B5, depending on whether the solution is for Aa  - 2a cot i A i  or 
A(na s in  i). As previously mentioned, inverting the information matrix yields the covar- 
iance matrix, the diagonal elements of which are the squares of the standard deviations 
of the e r r o r s  i n  the orbit parameters. In order  to invert the information matrix of equa- 
tion (61), only the inner matrix has to be inverted. The determinant of the inner matrix 
is given by 

- - 

- (5e6 - 1oe4 + 5e2 sin2w ) J  cos2w (e6 + 14e4 - 31e2 + 16) 
det = 4 2 

Note that the value of the determinant as well as the numeric condition of the infor- 
mation matrix is independent of the number of revolutions that the orbit is tracked, since 
K is not involved in  the elements of the inner matrix. 

The cofactors of the inner matrix are given by 

17 



C33 =e@ + $ - 1)[8 + 12e2 + e4 + ( 24e2 - e4)sin2w] 

2 c44 = (e-2 + e2 - 4- cos w 
4 

By letting 

- 1/2 qny.yj (67) 

P 

and using equations (63) to (66) the square roots of the diagonal elements of the covariance 
matrix - that is, the standard deviations of the e r r o r s  i n  the orbit parameters - can be 
expressed as 

18 
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The limits on the integrals used to obtain equation (61) w e r e  expressed in  radians. The 
constant 57.295 in  equation (67) converts these limits to degrees since the summations 
being approximated (eq. (44)) are i n  degrees. 

Equations (68) to (71) express the accuracies of the orbit parameters  after tracking 
the spacecraft for K revolutions with a range rate measurement made every degree of 
t rue  anomaly. A systematic e r r o r  in  the t rue  anomaly, corresponding to a constant t ime 
increment, is considered to be solved for and it is assumed that no portion of the orbit is 
occulted. Equations (68) to (71) can be used for other measurement schedules by applica- 
tion of a correction proportional to the inverse square root of the number of observations. 
(See ref. 7.) 

Considerable simplification of these expressions can be obtained by dropping the 
higher order  te rms  i n  eccentricity for orbits where the eccentricity is much l e s s  than 1. 
Also, simplifications can be obtained for specific values of the argument of periapsis such 
as Oo, 45O, or 90°. For w = 90°, however, the determinant of equation (62) becomes 

singular and the partial derivatives ab 
a(na sin i) 

are linearly related. (See 

eqs. (8), (9), and (32).) The independent orbit parameters,  in  this case, become 

B2 na sin i +- Ae, w, and tp. 
B6 

It might be noted that some corrections have been made in equations (60) to (71) as 
However, the computed results compared to the corresponding equations in reference 3.  

of reference 3 correspond to the corrected equations of this paper. 

For the case where there is no systematic e r r o r  in the t rue  anomaly, the perturba- 
tion equation becomes 

Ab = ab A(na sin i) + @ Ae + - ab Aw 
a(na s in  i) ae a w  

and the information matrix (eq. (61)) becomes 

L Symmetric 

19 



In equation (73), only the effects of the range-rate-measurement e r r o r  are con- 
sidered in computing the information matrix. The effect on the range rate of a random 
error in the t rue  anomaly of the measurement, i f  considered, could be approximated by 
changes in  the value of 0 to account for both e r r o r  sources. P 

The uncertainties of the orbit parameters  are obtained by inversion of the preceding 
information matrix (eq. (73)). By using the method of cofactors, the diagonal elements of 
the covariance matrix a r e  obtained, and the square roots of the diagonal elements (which 
are the standard deviations of the orbit parameters) are thus given by 

where 
- 1/2 

and 

(e-2 + e2 - 2)cos2y det = 
4 (77) 

Range Rate Measurements Made at Prespecified Values of Time 

In orbit-determination techniques, range ra te  measurements a r e  usually made at 
prespecified values of time. For this case, the perturbation equation (eq. (37)) becomes 

fo r  which the diagonal elements Ijj of the information matrix become 
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By substituting equations (19), (20), (21), (39), and (42) in equations (79) to (83), the 
square roots of the diagonal elements of the covariance matrix are given in the following 
equations for the case where the off-diagonal elements of the information matrix are 
assumed to be zero: 

L 

where 

tan- 1 J1-,2 
( l  + e  t a n 4  + tp 

-e s in  v 
1 + e cas  v 

+ 

3 60 2 [A2 + B2 cos(v + w )  + A5 sin(v + w)sin v(l + e cos 
v= 1 

where 



uo cr. [ 2KrB4 2( e 2 sin2w + ;) X 57.295 
P 

It might be mentioned that for range rate measured at prespecified values of time five of 
the orbit elements are determinable, whereas for range rate measured at prespecified 
values of true anomaly only four orbit parameters could be determined. For the range 
ra te  measurements made at prespecified values of time, the partial derivatives and the 
information matrix obtained through the use of equations (19), (20), (23), (39), (42), 
and (44) are compared in table I with the secant-method results,  which were obtained by 
finite differencing equations (3) and (33), and using equation (23), to obtain the partial 
derivatives (eq. (37)) that were applied in  equation (44). The necessary relation between 
v and t was obtained from Kepler's equation. 

SUMNLARY OF RESULTS 

Equations for  calculating orbit-determination accuracy were derived for inertially 
fixed orbits about distant bodies. This condition is realized only for binary stars but is 
closely approximated over short  time periods for orbits about the Moon and the planets. 
Analysis of the results computed by using the stationary-orbit techniques would be indica- 
tive of the orbit-determination results computed by using short  data a r c s  on slowly 
varying orbits. 

Analytic expressions for uncertainty in  the orbit elements were derived by assuming 
that a measurement was made every degree of t rue anomaly. These expressions could be 
used for many other measurement schedules by application of a correction given by the 
inverse square root of the number of observations. 

Secular t e rms  appeared in  the partial derivative of range rate with respect to the 
,., 

semimajor axis - a0 when measurements were considered to be made at prespecified 
Ba 

values of time; however, the other partial derivatives remained periodic. The secular 
a; component of - was shown to be much larger than the nonsecular component by the end 
aa 

of the first revolution of the orbit. The main effect of measuring range rate at prespec- 
ified values of time is an improvement in  the accuracy of determination of the semimajor 
axis and the eccentricity. This is largely caused by the variations in t rue anomaly of 
the spacecraft at given t imes with changes in semimajor axis and eccentricity. If 
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measurements a r e  sampled at prespecified values of true anomaly, the numeric condition 
of the information matrix does not vary with the number of complete orbits tracked; how- 
ever, if  the range rate measurements a r e  made at prespecified values of time, the 
numeric condition is affected by the number of orbits tracked. It was shown that only 
three of the orbit parameters  can be determined i f  the measurements a r e  made with no 
systematic e r r o r  in  the prespecified values of true anomaly. For this case, all partial 
derivatives and residuals in the differential correction process are composed of sine and 
cosine curves of period of the orbit and the process is linear. However, it is not likely 
that measurements will be made at prespecified values of true anomaly on a distant orbit. 
Making measurements at prespecified values of time is operationally feasible and also 
permits determination of five of the orbit elements. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., May 7, 1970. 
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TABLE I.- COMPARISON OF ANALYTIC AND SECANT-METHOD PARTIAL 

DERIVATIVES AND INFORMATION MATRM 

[Measurements made at prespecified times] 

(a) Partial derivatives at 2700 t rue anomaly 

-2.466617073-03 

-2.466546413-03 

- 1.474249693+00 

- 1.4 74 13 03 3E+00 

Analytic method 

1.458523373+00 

Secant method 

1.458463233+00 

1.459506493+00 

1.459444323+00 

(b) Information matrix (measurement every degree for 360°) 

Analytic method: 

4.165259653+06 1.213962973+09 -1.167322223+09 -3.353339903+09 
1.21396297E+09 4.616956703+12 4.656399963+11 1.202563413+11 

4.656399963+11 6.405609863+12 -3.330317943+10 
1.202563413+11 -3.3303 1794E+10 4.523677423+12 

1.995649753+06 -7.209495543+07 2.628330053+07 -2.703254793+09 

Secant method: 

4.199999143+06 1.241672633+09 -1.134804663+09 -3.371199243+09 
1.241672633+09 4.638993133+12 4.912699873+11 1.059615723+11 

4.91269987E+11 6.484766443+12 -5.01100596E+10 
1.059615723+11 -5.01100596E+10 4.532889563+12 

2.0073 1723E+06 -6.276014183+07 3.724689893+07 -2.70927273E+09 
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Figure 1.- Part ial derivative of range rate wi th respect to changes i n  semimajor axis. 
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Figure 2.- Part ial derivative of range rate wi th  respect to changes in eccentricity. 
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Figure 3.- Partial derivative of range rate with respect to changes i n  inclination. 
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Figure 4.- Partial derivative of range rate w i th  respect to changes in argument of pericenter. 
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